Dirac eigenvalues and total scalar curvature

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

σk-SCALAR CURVATURE AND EIGENVALUES OF THE DIRAC OPERATOR

On a 4-dimensional closed spin manifold (M, g), the eigenvalues of the Dirac operator can be estimated from below by the total σ2-scalar curvature of M 4 as follows λ 4 ≥ 32 3 R M4 σ2(g)dvol(g) vol(M, g) . Equality implies that (M, g) is a round sphere and the corresponding eigenspinors are Killing spinors. Dedicated to Professor Wang Guangyin on the occasion of his 80th birthday

متن کامل

Dirac eigenvalues and total scalar curvature Bernd Ammann and Christian Bär

It has recently been conjectured that the eigenvalues λ of the Dirac operator on a closed Riemannian spin manifold M of dimension n ≥ 3 can be estimated from below by the total scalar curvature: λ 2 ≥ n 4(n − 1) · ∫ M S vol(M) . We show by example that such an estimate is impossible. 1991 Mathematics Subject Classification: 58G25

متن کامل

m at h . D G / 9 90 90 61 11 S ep 1 99 9 Dirac eigenvalues and total scalar curvature

It has recently been conjectured that the eigenvalues λ of the Dirac operator on a closed Riemannian spin manifold M of dimension n ≥ 3 can be estimated from below by the total scalar curvature: λ ≥ n 4(n− 1) · ∫ M S vol(M) . We show by example that such an estimate is impossible. 1991 Mathematics Subject Classification: 58G25

متن کامل

Dirac Operators on Hypersurfaces of Manifolds with Negative Scalar Curvature

We give a sharp extrinsic lower bound for the first eigenvalues of the intrinsic Dirac operator of certain hypersurfaces bounding a compact domain in a spin manifold of negative scalar curvature. Limiting-cases are characterized by the existence, on the domain, of imaginary Killing spinors. Some geometrical applications, as an Alexandrov type theorem, are given. Mathematics Subject Classificati...

متن کامل

The First Dirac Eigenvalue on Manifolds with Positive Scalar Curvature

We show that on every compact spin manifold admitting a Riemannian metric of positive scalar curvature Friedrich’s eigenvalue estimate for the Dirac operator can be made sharp up to an arbitrarily small given error by choosing the metric suitably.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Geometry and Physics

سال: 2000

ISSN: 0393-0440

DOI: 10.1016/s0393-0440(99)00050-9